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1 Introduction 
A detailed study of transport properties of fluids and fluid mixtures is important not 
only for the solution of problems involving heat and mass transfer but also for the 
development of our understanding of molecular motions and interactions in such 
systems. For monatomic gases at low densities, the coefficients of viscosity, thermal 
conductivity, and diffusion can be accurately calculated at any temperature using 
exact kinetic theory expressions based on the work of Boltzmann, Enskog, and 
Chapman (see re$ 1) and methods have been devised2n3 for the direct 
determination of the pair potential energy functions of these substances from 
experimental transport data. However, such methods cannot be applied to 
monatomic fluids at high densities or to polyatomic fluids because there is at 
present no formal theory which allows an exact evaluation of transport properties 
in terms of a realistic description of the molecular interactions. 

An alternative approach, which has led to significant progress towards a 
successful molecular theory of transport properties in dense fluids, is the use of the 
computer simulation method of molecular  dynamic^.^^^ This can be applied in 
different ways. Firstly, in an attempt to simulate real fluids under given conditions 
of temperature and density, transport coefficients are evaluated for a system of 
molecules interacting with a specified form of potential energy function. The 
function most widely used is the well-known Lennard-Jones ( 1 2 4 )  potential 
which relates the interaction energy to the separation of a pair of molecules 
according to equation 1: 

V(r) = 4c[(o/r)  l 2  - (a/r) 

where parameters E and CT represent the depth of the attractive well and the 
separation at zero energy. The self-diffusion coefficient of a fluid is then calculated 
from the integration of the velocity autocorrelation function: 

G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, ‘Intermolecular Forces’, Clarendon Press, 
Oxford, 1981. 

D. W. Gough, G. C. Maitland, and E. B. Smith, Mol. Phys., 1972, 24, 151. 
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where the average is over all particles over a set of initial times, or from the mean- 
square displacement using the Einstein expression: 

D = lim - : X(t)  - x(0) ; 
i+m 6t I’ (3) 

Calculation of the self-diffusion of argon, the simplest atomic fluid, has been 
made5-’ in this way for a number of different temperatures and densities. For 
molecular fluids the (12-6) potential function is used to represent the interactions 
between the nuclei in neighbouring molecules as in the ‘two-centres’ computations 
of the self-diffusion coefficient fluorine, chlorine, bromine, and carbon dioxide * 
and of n i t r~gen ,~  and the ‘three-centres’ calculations of the self-diffusion coefficient 
for carbon disulphide.’ 

The shear viscosity and thermal conductivity coefficient may also be calculated 
by a steady-state molecular dynamics method l l v l  by expressing these coefficients 
in either the Einstein form or in terms of an autocorrelation function. The problem 
is the significantly greater computing time required for the evaluation of these 
transport coefficients, which are properties of the system as a whole, compared with 
the self-diffusion coefficient for which the diffusion of each individual molecule can 
be determined and the average taken. Thus, for a similar precision in the results, the 
molecular dynamics computations need to be carried out for about N times as 
long, where N is the number of particles considered. As an indication of accuracy, 
calculated viscosity coefficients of simulated argon l 2  had a statistical error of 15 
per cent. Transport coefficients can also be calculated by non-equilibrium 
molecular dynamics methods. Recent studies 1 4 3  l 5  indicate that this is a more 
economic way of computing liquid viscosities, but the uncertainty in the reported 
results is still about 10 per cent. 

As a result of such computational studies, it is possible, by suitable choice of 
molecular parameters, to obtain a reasonably satisfactory fit to the experimental 
data, considering the uncertainties in the experimental measurements and in these 
computations. However, there are disadvantages to this general approach. It is 
expensive of computer time because of the necessity to evaluate numerically the 
transport coefficients for each substance considered [for homonuclear diatomics, 
for example, there is an additional (dimensionless) parameter, the ratio of the bond- 
length to the diameter of each ‘atom’] for several temperatures and densities in order 
to determine the molecular parameters and the dependence of the transport 
coefficients on the experimental variables. Furthermore, it should be noted that, 

D. Levesque and L. Verlet, Phys. Rev. A, 1970, 2, 2514. ’ D. M. Heyes, J.  Chem. SOC., Faraday Trans. 2, 1983, 79, 1741. 
a K. Singer, J. V. L. Singer, and A. J. Taylor, Mol. Phys., 1979, 37, 1239. 

P. S. Y. Cheung and J. G. Powles, Mol. Phys., 1975,30,921. 
l o  D. J. Tildesley, Mof. Phys., 1983, 48, 129. 

B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys., 1970, 53, 3813. 
E. M. Gosling, I .  R. McDonald, and K. Singer, Mof .  Phys., 1973, 26, 1475. 
W. T. Ashurst and W. G. Hoover, Phys. Reu. A, 1975, 11,658. 

I4 D. J. Evans, Phys. Reo. A, 1981, 23, 1988. 
I s  D. Fincham and D. M. Heyes, Chem. Phys., 1983,78, 425. 
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even if exact agreement was obtained with experimental data over a wide range of 
experimental conditions, it would not necessarily follow that the assumed form of 
potential energy function accurately represented the interactions of the real 
molecules. 

The second general application of the molecular dynamics method is the 
simulation of assemblies of molecules interacting with somewhat over-simplified 
forms of potential energy function in order to establish a sound physical basis for 
the development of a successful theory of transport properties in dense fluids. For 
example, the computations of Alder and Einwohner 1 6 9 1 7  on the free-path 
distribution for hard-spheres, which interact according to 

U(r) = 0 
U(r) = a3 r < Q 

r > Q 

and square-well molecules, for which the interaction potential is 

(4) 

showed that molecular motion proceeds by a succession of small diffusive steps and 
not by a relatively small number of jumps whose length is approximately equal to 
the intermolecular spacing, as is implicit in the activation model of Eyring.18 
Furthermore, they showed that the Brownian motion approximation, which 
postulates that the molecules undergo many ‘collisions’ involving the attractive 
part of the potential (soft collisions) between successive repulsive interactions (hard 
collisions) and which was used by Rice and co-workers l9  as a basis for a theory 
of transport properties, is unsatisfactory even at a high pressure and at low 
temperature. 

What is required is a theory based on a reasonably realistic description of the 
trajectory of the molecules which can be used as a physically motivated and 
accurate approximation to the more formal theories. Such a theory is the van der 
Waals theory, which has served well for equilibrium properties. The van der Waals 
model of a fluid is of an assembly of molecules having a weak long-range attractive 
energy and a hard-core repulsive energy, as illustrated in Figure l(a). 

For real systems, the dependence of the pair interaction potential energy on 
molecular separation has the familiar shape shown in Figure l(b). The potential 
does have a steep repulsive part and the range of the attractive part can be 
considered large relative to the interparticle spacing at densities greater than the 
critical density. The attractive energy then forms a uniform attractive energy 
surface, and the molecules will move in straight lines between core collisions. This 

l6 B. J. Alder and T. Einwohner, J.  Chem. Phys., 1965,43, 3399. 
” T. Einwohner and B. J. Alder, J. Chem. Phys., 1968,49, 1458. 

S. Glasstone, K. J. Laidler, and H. Eyring, ‘The Theory of Rate Processes’, McGraw-Hill Book Co. Inc., 
New York, 1941. 

l9 S. A. Rice and A. R. Allnatt, J. Chem. Phys., 1961, 34, 2144. 
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(a) Van der Waals Model 

(b) Realistic Pair Potential Function 

Figure 1 Comparison of a realistic pair potential energy curve with that given by the van der 
Waals model 
(Reproduced by permission from Physica, 1974,75, 101) 

description of the molecular motion is expected to be correct at tempera- 
tures greater than the attractive energy well-depth or, approximately, the criti- 
cal temperature, when the kinetic energy will exceed the attractive potential 
energy. 

An extremely important consequence, for the van der Waals theory of transport 
properties is that it is equivalent to the hard-sphere theory, providing that the core 
sizes are allowed to decrease as the temperature increases to reflect the somewhat 
soft repulsive energy of real systems. This is the justification of the present widely- 
accepted method of interpreting transport coefficient data on the basis of the hard- 
sphere model. 

In the first part of this paper, the expressions are given for the transport 
coefficients of dense assemblies of smooth hard-spheres and of rough hard-spheres. 
In the following sections, these hard-sphere theories are applied to the rare gases, to 
metals, to molecular fluids, and to mixtures. Although the shear viscosity and 
thermal conductivity coefficients are of greater significance from the chemical 
engineering point of view, theoretically it is the diffusion coefficient which has 
proved the most important in the development of theories in dense fluids. This 
arises because it is the simplest transport property to treat theoretically and also 
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because of the greater accuracy with which it can be calculated for a given 
intermolecular potential energy function. 

2 Transport Coefficients for a Dense Hard-sphere Fluid 
A kinetic theory for transport coefficients of a dense hard-sphere system has been 
given by Enskog.20 In a dense system, the collision rate is higher than in a dilute 
system because the diameter of the molecule is no longer negligible compared with 
the interparticle distance. The Enskog theory of diffusion assumes that the high 
density system behaves exactly as a low density system except that the collision 
frequency in increased by a factor of g(a), where g(o) is the radial distribution 
function at contact for spheres of diameter o. The solution of the Boltzmann 
equation valid at low density is merely scaled in time to give the ratio of the 
diffusion coefficient D, at high number density n relative to that at low density, 
subscript zero: 

g(o) is obtained from computer simulation studies and is given by the Carnahan- 
Starling equation: 21 

where 5 = b/4V for a molar volume V, and b = 27cNo3/3. Do is related to the 
number density no at temperature T by the expression 

Do = (3/8n0x02)(xkT/rn)* (8) 

where rn is the molecular mass and k is the Boltzmann constant. 
For diffusion the particles themselves must move, but for viscosity and thermal 

conductivity there is the additional mechanism of collisional transfer whereby 
momentum and energy can be passed to another molecule upon collision. The 
Enskog theory for the viscosity qE and the thermal conductivity h, in terms of the 
low density coefficients accordingly contains additional terms: 

3L,/h, = [ l / g ( o )  + 1.2b/V + 0.755g(o)(b/V)2] (10) 

where the low density coefficients are given to first-order approximation by 

where C, is the molecular heat capacity at constant volume. 
2o D. Enskog, Kungl. Svenska. Vet.-Ak. Handl., 1922, 63, No. 4. 
21 N. F. Carnahan and K. E. Starling, J. Chem. Phys., 1969, 51, 635. 
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In order to apply equations 6,9, and 10 for the calculation of dense gas transport 
coefficients, it is necessary to assign a value to the core size. In the original 
application of this method,22 values for cr for the rare gases were obtained by fitting 
p VT data to the van der Waals equation of state. It was found that the calculated 
high density transport coefficients differed by less than 10 per cent from the 
experimental values. 

Now the Enskog theory is based on the molecular chaos approximation. A sphere 
is considered as always colliding with other spheres approaching from random 
directions with random velocities from a Maxwell-Boltzmann distribution for the 
appropriate temperature. However, molecular dynamics calculations 2324 have 
shown that there are correlated molecular motions in hard-sphere systems. At high 
densities, the principal correlation effect is back-scattering, whereby a sphere 
closely surrounded by a shell of surrounding spheres is most likely to have its 
velocity reversed on collision with its neighbours and this leads to a decreased 
diffusion coefficient. At intermediate densities, there is a different correlation effect 
associated with an unexpected persistence of velocities which leads to an enhanced 
diffusion coefficient. The resulting corrections to the Enskog transport coefficients 
have been computed by Alder, Gass, and Wainwright for systems of 108 and 500 
particles, with the diffusion coefficients extrapolated to infinite systems on the 
basis of hydrodynamic theory. The density dependence of the corrections is 
illustrated in Figure 2, where Vo, given by No3/$, is the volume of close-packing of 
spheres. 

For Vo/V up to about 0.5, corresponding to dense gases at densities up to 2.5- 
times the critical density, the corrections to Enskog theory for the viscosity and 
thermal conductivity coefficient are less than 10 per cent, but for diffusion the 
corrected coefficient is significantly greater than the Enskog value at densities 
corresponding to 1.5- to 2-times the critical density. At the highest densities, 
approaching the onset of solidification, the corrections arising from back-scattering 
result in the exact hard-sphere diffusion coefficient being lower by about 40 per 
cent, and the viscosity coefficient being higher by a similar amount. To obtain exact 
expressions for the dense hard-sphere transport coefficients in terms of the low 
density coefficients, equations 6, 9, and 10 must be multiplied by the appropriate 
correction factor from Figure 2 at the given reduced volume. With core sizes 
determined from equilibrium data by extrapolation to infinite temperature, 
quantitative evidence for the existence of these correlated motions in real systems 
was obtained by analysis of self-diffusion coefficients of methane 2 5  and of carbon 
dioxide.26 

3 Application of Exact Smooth Hard-sphere Expressions: Self-Diffusion 
A. Monatomic Gases and Methane.-It was realised that there were uncertainties 
22 J. H. Dymond and B. J. Alder, J. Chem. Phys., 1966,45, 2061. 
” B. J. Alder and T. E. Wainwright, ‘The Many Body Problem’, ed. S. K. Percus, Interscience Publ. Inc., 

24 B. J. Alder and T. E. Wainwright, Phys. Rev. Lett., 1967, 18, 988. 
” J. H. Dymond and B. Alder, J. Chem. Phys., 1968,48, 343. 
l6 J. H. Dymond and B. J. Alder, Ber. Bunsenges. Phys. Chem., 1971,75, 394. 

New York, 1963. 
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0.7 VO/" O e 5  0. I 0.3 

Figure 2 Ratio of the exact hard-sphere transport coefficients to the Enskog coefjcients given 
by molecular dynamics calculations, ref. 11 
(Reproduced by permission from Physica, 1974,75, 103) 

in determining the core size from equilibrium data and different methods were 
proposed *' for comparing calculated and experimental transport coefficients 
without a prior estimation of core size. A quantity D* which is independent of 
molecular diameter was defined according to: 

D* = (nD/noDo)( V/  v,) f (13) 

D* can be calculated from theory by writing 

where (DID,) is the computed correction to Enskog theory. D* can also be 
calculated from experimental data on the assumption that the real fluid is behaving 
like an assembly of hard spheres, since on substituting for the hard-sphere 
expressions for n,D, and V,, 

(1 5 )  D* = 5.030 x lo8 (M/RT)*D/Vf 

27 J. H. Dymond, Physicu, 1974,75, 100. 
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From equation (14), D* is a function of V/Vo; from equation (15), D* is a function 
of V for a given substance at a given temperature. To test whether this smooth 
hard-sphere theory can satisfactorily account for the density dependence of the 
experimental measurements at a given temperature, D* from theory, equation (14), 
is plotted against log (V/Vo) and D* from experiment, equation (15) is plotted 
against log (V). If these curves are superimposable laterally then the hard-sphere 
theory does represent the density dependence of the data, and the range of 
applicability of the theory can be established. Furthermore, V ,  can be obtained 
from points where the curves coincide. 

In the absence of extensive accurate diffusion coefficient measurements for the 
rare gases, accurate methane data 28,29 obtained using the n.m.r. spin-echo 
technique have been used 27-31 to test the applicability of the smooth hard-sphere 
theory. It was assumed initially, and subsequently confirmed, that methane is a 
polyatomic molecule to which the rough hard-sphere theory (see Section 4) applies 
with a coupling factor of unity. It was shown that the experimental points at these 
temperatures from 1.7-times the critical temperature, T,, down to 1.2 T, lie within 
5% of the smooth hard-sphere values down to densities about 0.8-times the critical 
density. A subsequent experimental study was carried out by Harris and 
Trappeniers3' on methane at 110, 140, and 160 K. They found the reduced 
diffusivity D* isotherms fell on a common curve when plotted against reduced 
density n* (equals no3)  with the core sizes given in Table 1, in agreement with the 
smooth hard-sphere predictions, except at the highest densities (n* > 0.86) where 

2.0 

D* 

1.0 

0.0 
0.2 0-4 0.6 0-8 1.0 

n* 

Figure 3 Reduced diffusion coefJicients for methane 
(Reproduced by permission from Physica, 1980, lMA, 268) 

2 0  P. H. Oosting and N. J. Trappemiers, Physica, 1971, 51, 418. 
29 K. R. Harris, Physica, 1978,94A, 448. 
30 K. R. Harris and N. J. Trappeniers, Physica, 1980, lMA, 262. 
31 J. H. Dymond and T. A. Brawn, Proc. Symp. on Transport Properties of Fluih,  Nat. Eng. Lab., East 

Kilbride, H.M.S.O., 1979. 
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Figure 4 Reduced diffusion coeficients at high density for methane and ethene 
(Reproduced by permission from Physica, 1980, lMA, 269) 

the experimental values are significantly higher. A similar conclusion was obtained 
by analysis of the self diffusion data for ethene obtained by Arends, Prins, and 
Trappen ie r~ ,~~  with the core sizes given in Table 1. This is illustrated in Figures 3 
and 4. 

This discrepancy at high density casts doubt on the validity of the model. 
However, recent molecular dynamics studies by Easteal, Woolf, and Jolly 33 of the 
self diffusion coefficient in a hard-sphere system concluded that although the 

Table 1 Hard-sphere diameters 

T/K 
110.00 
140.00 
160.00 
223.15 
298.15 
323.15 

CzH4 

o/nm T / K  o/nm 
0.3745 123.15 0.4150 
0.3695 173.15 0.4080 
0.3655 223.15 0.4026 
0.3595 273.15 0.3985 
0.3540 298.15 0.3966 
0.3520 

32 B. Arends, K. 0. Prins, and N. J. Trappeniers, Physicu, 1981, lWA, 307. 
33 A. J. Easteal, L. A. Woolf, and D. L. Jolly, Physicu, 1983, 121A, 286; ibid., 1984, 127A, 344. 
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13- 

computed corrections to the Enskog theory were dependent on the number of 
molecules considered in the calculation, the number dependence was significantly 
lower than that previously reported by Alder, Gass, and Wainwright.” By taking 
small increments in density, the dependence of (DID,) on reduced density was 
obtained. Their results are compared with previous computations in Figure 5. 

I I I J I I I I I I I I I  

0 

8 
0 

12-  7 4 
t L s -  # 

I 8  I I I L I I I I I , ,  

15 17 19 21 2 3  2 5  2.7 29 31 3.3 3 5  37  39 

Figure 5 Density dependence of DID,. Filledsymbols, ref. 33: V, 128particles: ., 250particles: 
A, 432 particles. Open symbols, ref. 1 1 :  V 108 particles: A, 500 particles: 0, infinite system. 
Hatched symbols, ref. 34: B, 108 particles: A, 500 particles: 0, 4 OOO particles 
(Reproduced by permission from Physica, 1983, 1211A, 289) 

The solid line is given by the following equation, where the coefficients have been 
rounded off to give significant figures only: 

DID, = 0.7144 + 2.8786 - 0.82236’ - 10.93c3 (16) 

Using this correction to Enskog theory, Easteal, Woolf, and Jolly found that D for 
methane obtained from experiment was in excellent agreement with the smooth 
hard-sphere predictions over the whole density range, as shown in Figure 6. 

The core sizes are given by the following equation, with rounded values for the 
coefficients, 

o/nm = 0.397 95 - 2.765 x l@T/K + 3.420 x lO-’ (T/K)’  ( 1  7 )  

These values are lower than those in Table 3, but they agree to better than 1% with 
values obtained from the density of methane at the freezing point using the 
expression for randomly close-packed hard-~pheres.~~ 
34 B. L. Holian and co-workers cited by W. G. Hoover and W. T. Ashurst in ‘Theoretical Chemistry’, ed. H. 

3 5  R. 0. Watts and I. J. McGee, ‘Liquid State Chemical Physics’, Wiley, New York, 1976, 162. 
Eyring and D. Henderson, Academic Press, New York, 1975, Vol. 1, p. 24. 
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0 96- 

0 92- 

o/nm = 0.1 161 1 ( V/cm3 mol-')+ (1 8) 

8 
0 

0 0  
0 0  

I 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ,  

The smooth hard-sphere model has been used36 as a basis for the calculation of 
rare-gas self-diffusion coefficients. Core sizes were derived from densities at the 
freezing pressure and adjusted at temperatures close to the triple point, as described 
in Section 6 on viscosity. The calculated values generally agree with the 
experimental results to within the large experimental uncertainty of the 
measurements and in fact provide a more reliable estimate of this property for these 
substances. 

0 
0 

0 

3 0  

s 0 

B. Liquid Metals-The applicability of the smooth hard-sphere theory for 
describing the self-diffusion coefficients of liquid metals was investigated by 
Protopapas, Andersen, and Parlee.37 These authors used the correction factors 
of Alder, Gass, and Wainwright.'' The core size at the melting point was 
obtained 38 on the assumption that the packing fraction at the melting point, t,, 
equal to 7cno3/6, has the same value of 0.472 for all metals. The temperature 
dependence of the core diameter was derived from consideration of the average 
distances of closest approach for repulsive collisions of real molecules. This leads 
to the expression 38 

a/o, = [ 1 -B( T/ Trn)+]/( 1 -B) (19) 

where subscript m refers to the melting point and B is a constant with a value of 
0.112 for all metals. 

The predicted self-diffusion coefficients are in close agreement with the 
measured values as shown in Table 2 for values at the melting point for 13 
metals. 

36 A. J. Easteal and L. A. Woolf, Physica, 1984, 124B, 182. 
3' P. Protopapas, H. C. Andersen, and N. A. D. Parlee, J. Chem. Phys., 1973, 59, 15. 

P. Protopapas and N. A. D. Parlee, High Temp. Sci., 1974,6, 1.  
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Table 2 
predictions of the hard-sphere theory * 

Comparison of experimental melting point self-diffusion coeficients with the 

Metal 
Li 
Na 
K 
cu 
Rb 
Ag 
Zn 
Cd 
Hg 
Ga 
In 
Sn 
Pb 

* ReJ 37. 

Experimental Calculated 
D/1C9 m2 s-' 

7.00 
4.22 
3.82 
3.96 
2.62 
2.55 
2.05 
1.78 
1.17 
1.72 
1.74 
2.05 
1.68 

7.0 1 
4.24 
3.85 
3.40 
2.68 
2.77 
2.55 
2.00 
1.07 
1.73 
1.77 
1.96 
1.67 

The hard-sphere theory also satisfactorily reproduces the temperature de- 
pendence of the self-diffusion coefficient as illustrated for liquid sodium in Figure 7, 
which is based on Figure 3 of re$ 37. 

4 Rough Hard-sphere Model for Polyatomic Fluids 
The motion of a polyatomic molecule in a real liquid has been shown by 
Chandler4' to be related to the motion of a particle in a rough hard-sphere fluid. 
It is assumed that the motion is determined primarily by those parts of the 
intermolecular potential that are short-ranged and steeply repulsive. This is 
considered valid at densities above twice the critical density where attractive 
interactions will play only a minor role. For polyatomic molecules there is the 
possibility of changes in angular momentum as well as in translational momentum 
upon collision and Chandler 42 showed that coupling between translational and 
rotational motions led to the result that the diffusion coefficient for a rough 
hard-sphere fluid DRHS was related to that for a smooth hard-sphere fluid 
DSHS: 

where 0 < A < 1. 
A was stated to be rigorously independent of density and furthermore assumed to 

be temperature independent also. There is thus a lowering of the self-diffusion 

39 R. H. Meyer and N. H. Nachtrieb, J. Chem. Phys., 1955, 23, 1851. 
*' 0. S. Ozelton and R. A. Swalin, Phil. Mug., 1958, 18, 441. 

D. Chandler, J.  Chem. Phys., 1974, 60, 3500. 
42 D. Chandler, J. Chem. Phys., 1975,62, 1358. 
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Figure 7 Comparison of experimental self-dffwion coefficients for sodium with calculated 
hard-sphere values (solid line). Experimental: - - -, ref. 39; - - -, ref. 40 

coefficient as coupling produces an additional mechanism for molecular velocity 
relaxation. 

The initial application of this rough hard-sphere theory was to carbon 
tetrachloride The temperature-dependent core size was determined by 
matching along isotherms the logarithmic derivative of the experimental diffusion 
coefficient with respect to density with that predicted by the theory. For ease of 
application, DE calculated using the Alder, Gass, and Wainwright correction to 
Enskog was represented by an analytical expression quadratic in reduced density 
no’. A satisfactory fit to the high pressure measurements of McCool and Woolf4’ 
at different temperatures was given with a constant value of A of 0.54 and with core 
sizes given by: 

o/nm = 0.5270[1 - 0.057(T/K - 283.2/283.2)] (21) 

Since then accurate measurements of self-diffusion coefficients have been made 
for several polyatomic fluids by the n.m.r. spin echo technique and the data 
interpreted in terms of the rough hard-sphere model. In place of the smooth hard- 
sphere diffusion coefficient expression of Chandler:* the simpler relationship given 

O 3  M. A. McCool and L. A. Woolf, J. Chem. SOC., Faraday Trans. 1 ,  1972, 68, 1971. 
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earlier by Dymond44 has been generally used. Some of the results are collected in 
Table 3. 

Table 3 Translational-rotational coupling factors, A ,  for diffusion 

Compound 
Methane 
Carbon tetrafluoride 
Trifluorome t hane 
Fluorotrichloromethane 
Chlorot rifluoromethane 
Carbon tetrachloride 
Tetrameth ylsilane 
Benzene 
Perfluorocyclobutane 
Sulphur hexafluoride 
Sulphur hexafluoride 
C yclohexane 
Methylcyclohexane 
Pyridine 

T rangelK 
110-198 
235-348 
168-250 
341460 
303-348 
283-328 
298-373 
303433 
323473 
240-319 
296-398 
3 13-383 
203-298 
303423 

0 rangelnm 
0.372-0.346 
0.45 1 4 . 4 3 9  
0 . 3 9 8 4 3  78 
0.5034.490 
0.460-4.456 
0.5274522 
0.568-0.563 
0.5 1 2 4 . 5 0 5  
0.5654.554 

0.487 
0.478-0.472 
0.554-4.551 
0.578-0.574 
0.494-4.490 

A 
1 .o 
1 .o 

0.61 & 0.04 
0.64 & 0.01 
0.90 & 0.02 

0.54 
0.59 & 0.03 
0.77 & 0.05 
0.92 & 0.06 

1 .o 
0.97 

0.78 & 0.07 
0.26-0.52 
0.62 - 1.05 

Ref: 
33 
45 
46 
47 
48 
42 
49 
49 
50 
45 
51 
52 
53 
54 

For the substituted methanes, the extent of translational-rotational coupling is 
in the order 

CCl, > CHF, > CFCl, > CF,Cl > CF, 

as might generally be expected from consideration of molecular interlocking which 
is most evident with carbon tetrachloride and decreases as the chlorine is replaced 
by fluorine atoms. The coupling factor of trifluoromethane is however difficult to 
explain since both methane and tetrafluoromethane behave as smooth hard-sphere 
molecules. For the compounds in Table 3, the factor A is generally temperature 
independent. However, for trifluoromethane at 142 K, A is found to be 0.38, 
significantly lower than the value found at higher temperatures. This was attributed 
to either increased translational-rotational coupling in this dipolar fluid (1.62 D )  
or to the effect of attractive interactions. The temperature variation of A for 
methylcyclohexane can be explained in terms of the increased departure from 
spherical shape of the molecules on going from cyclohexane, for which the model 

** J. H. Dymond, J.  Chem. Phys., 1974,60, 969. 
*’ J. H. Dymond, J.  Chem. SOC., Faraday Trans. 2, 1972,68, 1789. 

47 J. DeZwaan and J. Jonas, J. Chem. Phys., 1975,62,4036. 
48 K. R. Harris, Physica, 1978,93A, 593. 
49 H. J. Parkhurst, Jr. and J. Jonas, J. Chem. Phys., 1975,63,2698. 
50 R. J. Finney, M. Fury, and J. Jonas, J. Chem. Phys., 1977, 66, 760. 

’* J. Jonas, D. Hasha, and S. G. Huang, J.  Phys. Chem., 1980,84, 109. ’’ J. Jonas, D. Hasha, and S. G. Huang, J.  Chem. Phys., 1979,71, 3996. 
54 M. Fury, G. Munie, and J. Jonas, J. Chem. Phys., 1979,70, 1260. 

F. X. Prielmeier, E. W. Lang, and H.-D. Ludemann, Mof.  Phys., 1984, 52, 1105. 46 

J. DeZwaan and J. Jonas, J. Chem. Phys., 1975,63,4606. 
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works remarkably well, to methylcyclohexane. The results for pyridine can be 
compared with those for benzene for these molecules have nearly identical shapes 
and moments of inertia. However, pyridine has a significant dipole moment (2.2 D) 
and the molecules can hydrogen-bond. The effect of these intermolecular 
interactions will decrease as the temperature is raised, and this is reflected in the 
increase in A values. At high temperature, A attains the smooth hard-sphere value 
of 1, which is unexpected by comparison with benzene which has an A value of 0.82. 

The predicted density dependence of D for the compounds in Table 3 is in very 
close agreement with experimental measurements except at high densities 
corresponding to V,/V > 0.66 where the experimental values are higher than 
predicted. The failure of the rough hard-sphere theory in this region arises from the 
fact that the smooth hard-sphere system becomes metastable at these densities. 

More recently, Easteal and Woolf 36 have used their values for the corrections to 
Enskog theory (Figure 5 )  to determine the dependence of A on density and 
temperature. The core sizes were determined from molar volumes at the freezing 
pressure. They found that for carbon tetrachloride, using the data of McCool and 
Woolf,4’ the factor A is temperature independent, as found by but 
density dependent. This is illustrated in Figure 8. This result is at variance with the 
postulate of Chandler that A should be rigorously density independent. 

0.52 

I I I I I I 1 
0 *43 0- 45 0 47 0.4 9 

Figure 8 Density dependence of A for carbon tetrachloride. 9,283.2 K: 0,298.2 K: 0,313.2 
K: A, 328.2 K 
(Reproduced by permission from Physica, 1984, 124B, 187) 

Strong density dependence is also observed for 1,2-dichloroethane, mesitylene, 
and octamethylcyclotetrasiloxane. For benzene, A is strongly temperature 
dependent as well as density dependent. However, for carbon disulphide, where the 
departure from spherical shape is predicted 42 to render the rough hard-sphere 
model invalid, it is found that the experimental self-diffusion coefficients are in close 
agreement with values predicted on the basis of this model with a density 
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independent and temperature independent A factor of 0.765 & 0.02. For the 
similarly shaped but dipolar acetonitrile, A is temperature dependent, decreasing as 
the temperature is lowered, but still density independent. A similar result is found 
for deuteromethanol, where the temperature dependence is significantly greater. 

For those molecules where A is found to have a strong density dependence, it 
might be concluded that the model is invalid. However, another possibility is that 
the core sizes for transport properties at these low reduced temperatures are not 
given by equation 18 (see Section 6B). A small variation in the core size leads to a 
significant change in the density dependence of the calculated diffusion coefficient 
at high densities. Further studies are required to produce an agreed set of core sizes 
for these molecules. 

5 Diffusion Coefficients in Binary Mixtures 
A. Mutual Diffusion Coefficients-The mutual diffusion coefficient, (0, 2)E, for a 
binary dense smooth hard-sphere mixture can be calculated by an extension of the 
Enskog method used for self-diffusion coefficients of dense fluids. At high density, 

is related to the low density coefficient by the unlike pair distribution 
function at contact g,,(o): 

where n ,  and n,  are the number densities of the particles of molecular masses rn, 
and rn, and with molecular diameters Q, and 0,. The low density mutual diffusion 
coefficient is given by the expression 5 5  

The initial application of these expressions was to trace gas diffusion in dense 
gases,56 using core sizes determined from pVT data and g,,(o) values from the 
approximate expression given by Lebowit~.~’ The qualitative features of the results 
were that (i) when the trace gas had the higher molecular mass the measured 
diffusion coefficient was significantly higher than the calculated value but that (ii) 
when the trace gas had the lower molecular mass the diffusion coefficient was less 
than predicted. The features were understandable in terms of the correlated events 
previously described for pure systems, which are neglected in the Enskog theory. 
The positive deviations arising from a vortex flow pattern are expected to be 
enhanced by a more massive diffusing particle because of its larger momentum 
relative to that of the solvent molecule. On the other hand, for a lighter trace gas 
particle there is an increased probability of back-scattering. These effects were 

’’ S. Chapman and T. G. Cowling, ‘The Mathematical Theory of non-uniform Gases’, Cambridge 

s6 J. H. Dymond and B. J. Alder, J. Chem. Phys., 1970,52,923. 
” J. L. Lebowitz, Phys. Rev. A, 1964,895, 133. 

University Press, Cambridge, 1970. 
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investigated quantitatively 58i59 by computer simulation studies for systems of a 
single test particle in a solvent for selected size and mass ratios to give values of 
the correction factor ( D l  z)sHs/(DIZ)E. The exact smooth hard-sphere diffusion 
coefficient (D12)SHS is then given by 

Instead of previous approximate  estimate^,'^ g12(o) was given by 6o 

where gii(o) is given by 

1 3 y i  y i 2  
g i i ( 0 )  = - +-+- 

1 - 5 2(1 - 5 ) 2  2(1 - 5)3 

where 6 equals C ni7coi3/6 and yi  = (oicj + o,&)/oi. 
For applicatidn to systems involving polyatomic fluids, effects of translational- 

rotational coupling are included by expressing the rough hard-sphere mutual 
diffusion coefficient (D12)RHS in terms of the smooth hard-sphere coefficient 61 

(Dl 2)RHS = A 1 2(D1 2)SHS (27) 

where A12 is the coupling factor between the unlike molecules. For nearly ideal 
binary liquid mixtures, it was shown by Bertucci and Flygare 61 that the calculated 
mutual diffusion coefficient was in excellent agreement with experiment over the 
whole composition range. However, the calculations were based on the assumption 
that the mass and size ratios were exactly equal to one and the value of 
(D12)SHS/(D12)E obtained for trace amounts of solute was used at all concentra- 
tions. To account more precisely for the actual molecular size and mass ratios, 
Czworniak, Andersen, and Pecora62 assumed that, in the absence of molecular 
dynamics calculations at intermediate concentrations, the correction factor in 
mixtures with mole fraction x1 of component 1 was given by 

Core sizes for the pure components were derived from self-diffusion coefficient data. 
They applied this theory to their results obtained from laser light scattering and 
concluded that the rough hard-sphere theory was accurate for both spherical and 

58 P. T. Herman and B. J. Alder, J. Chem. Phys., 1972, 56, 987. 
5 9  B. J. Alder, W. E. Alley, and J. H. Dymond, J. Chem. Phys., 1974, 61, 1415. 
6o N. F. Carnahan and K. E. Starling, ‘Abstracts of Invited Lectures for the van der Waals Centennial 

6 1  S. J. Bertucci and W. H. Flygare, J. Chem. Phys., 1975, 63, 1. 
62 K. J. Czworniak, H. C. Andersen, and R. Pecora, Chem. Phys., 1975, 11, 451. 

Conference on Statistical Mechanics’, North-Holland Publ. Co., Amsterdam, 1973. 
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very non-spherical molecules in ideal and moderately ideal solutions. Non-ideality 
was taken into account by using the relationship 

where y ,  is the activity coefficient of component 1. D , ,  was determined at any 
concentration by dividing the experimental mutual diffusion coefficient at that 
concentration by the thermodynamic factor, for comparison with the calculated 
(D12)sHs. Values obtained for A12, assumed to be dependent only on the nature of 
the components and not on their proportions in the solutions, were in the range 0.5 
to 0.65 for C6H,,-C6H,CH3, C ~ H & ~ H S C H ~ ,  C6H1,-CC14, C6H6<6H12, 
CC14<&6, cCl4-Cs2, CC14-CH3COCH3, C6H6-CH3COCH3 with a Value Of 

0.89 for C6H6-n-C,H16. 
In order to provide a more rigorous test of this theory, Dymond and W 0 0 l f ~ ~  

measured tracer diffusion coefficients for five different solutes in n-hexane at 298 K 
at pressures up to 400 MPa. These limiting intradiffusion coefficients are 
theoretically identical to mutual diffusion coefficients at low solute concentration. 
A comparison with rough hard-sphere values showed remarkable agreement and it 
was found that the assumption that A , ,  was equal to A for the pure solvent was 
valid for benzene, toluene, and even carbon disulphide tracers but that for 
acetonitrile tracer A,, was approximately 20% lower than A. For the exact 
determination of A12, it is essential that values for the correction factor 
(D12)sHs/(D,,)E should be obtained at closely spaced mass ratios and size ratios to 
overcome the errors involved in interpolating the limited computer results. 
Protapapas and Parlee 64 showed that the results of Alder, Alley, and Dymond 5 9  

could be interpolated quite accurately on the basis of a semilogarithmic plot. Using 
these correction factors, diffusion coefficients calculated on the basis of the smooth 
hard-sphere theory for gases diffusing in liquid metals were found to be in good 
agreement with experiment where the latter were self-consistent. In order to remove 
this uncertainty of interpolation, Dymond, Easteal, and Woolf 6 5  have recently 
studied tracer diffusion of seven solutes in octamethylcyclotetrasiloxane at 323 K at 

Table 4 Core sizes and A 1 2  values with OMCTS af  323 K 
A12 

Tracer 
CH,OH 
CH,CN 
C2H,0H 
cs2 
cc14 
c-C6H 12 

c-C8H16 

a/nm 
0.363 
0.410 
0.422 
0.428 
0.516 
0.546 
0.586 

V/V,  1.607 
0.31 
0.29 
0.24 
0.32 
0.26 
0.23 
0.22 

1.565 1.503 
0.27 0.26 
0.29 0.28 
0.21 0.16 
0.30 0.23 
0.21 0.16 
0.22 0.16 
- - 

J. H. Dymond and L. A. Woolf, J. Chem. Soc., Faraday Trans I ,  1982,78,991. 
64 P. Protapapas and N. A. D. Parlee, High Temp. Sci., 1976,8, 141. 
65 J. H. Dymond, A. J. Easteal, and L. A. Woolf, Chem. Phys., submitted. 
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pressures up to 59 MPa and reported values for the correction factor for the actual 
size and mass ratios for the individual systems. The derived values for the 
translational-rotational coupling factors A , ,, together with the core sizes, are given 
in Table 4. All the A,, values are small, implying considerable rotational- 
translational momentum transfer between solute and solvent. For the more 
spherical solute molecules, A , is density dependent. 

These results for A,, are significantly different from the values obtained for other 
non-electrolyte systems from measurements of mutual diffusion coefficients. 
Several studies have been made 66*67*69-74 on different systems using the 
chromatographic peak-broadening method at atmospheric pressure over a wide 
range of temperature. The data were in close agreement with the calculated rough 
hard-sphere values for all the systems s t ~ d i e d , ~ ~ - ~ ~  which included as solutes, 
rare gases, methane, neopentane, carbon tetrachloride, tetra-alkyl tins (where the 
alkyl group was methyl, ethyl, n-propyl, n-butyl, or n-decyl) and a variety of 
solvents including benzene, cyclohexane, n-hexane, n-octane, n-decane, n- 
tetradecane, acetone, methanol, propan-2-01, butan- 1-01, and octan-1-01. The 
solute core size was determined from the tracer diffusion in one solvent at a given 
temperature (298 K). A stricter test with measurements for aromatic hydrocarbons 
in cyclohexane up to its critical temperature concluded71 that the rough hard- 
sphere theory was adequate over the whole of this temperature range. 

Evans, Tominaga, and Ravis 67 considered A , ,  to have different but fixed values 
for each of the three classes of systems (i) monatomic solute and solvent species for 
which A,, is 1, (ii) monatomic solute and polyatomic solvent species for which A12 
should be unity, but was found to be 0.78 for an optimum fit of mutual diffusion 
coefficient data, and (iii) polyatomic solute and solvent species for which they 
derived a value of 0.7 for A 1 2 .  These A,, values cover the calculated range of 
molecular roughness with the lower value of 0.7 corresponding to uniform mass 
distribution throughout the molecule.74 However, the correction factors were 
obtained by interpolation of the limited computer results together with some 
additional simulation values which appear to have a large uncertainty. 
Furthermore, the core sizes for monatomics were determined from self-diffusion 
data at temperatures far below the temperature of the actual mutual diffusion 
measurements, so the A,, value should not be taken as exact. 

Tracer diffusivity results for small crown ethers in cyclohexane 7 2  have also been 
satisfactorily interpreted in terms of the rough hard-sphere theory. The authors 
suggest that the disk-like shape of the ethers is averaged out by rapid molecular 
rotation. For larger crown ethers diffusing in n-decane and n-tetradecane, the 
theory has limited SUCC~SS.’~ 

66 J. H. Dymond, J. Phys. Chem., 1981,85, 3291. 
67 D. F. Evans, T. Tominaga, and H. T. Davis, J. Chem. Phys., 1981, 74, 1298. 

S. H. Chen, H. T. Davis, and D. F. Evans, J. Chem. Phys., 1981,75, 1422. 
69 S. H. Chen, H. T. Davis, and D. F. Evans, J.  Chem. Phys., 1982,77, 2540. 
7 0  S. H. Chen, D. F. Evans, and H. T. Davis, AIChE J, 1983,29,640. 
7 1  C. K. J. Sun and S. H. Chen, AIChE J, in press. 
7 2  H. C. Chen and S. H. Chen, Chem. Eng. Sci., in press. 
73 H. C. Chen and S. H. Chen, ind. Eng. Chem., Fundam., in press. 
7* M. Baleiko and H. T. Davis, J. Phys. Chem., 1974, 78, 1564. 
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B. Inter- and Intradiffusion Coefficients away from the Zero Concentration Limit.- 
The advantage of the rough hard-sphere theory is that it can be applied to intra- 
(tracer) diffusion and inter-(mutual) diffusion in binary fluid mixtures over the 
whole composition range. Harris and Woolf 75 calculated tracer diffusion 
coefficients for each component in five binary liquid mixtures, based on the 
equation of Sandler and Mason76 

It was found generally that the values of the coupling factor obtained by 
comparison of the calculated tracer diffusion coefficient with the measured 
coefficient for each of the two components were in close agreement over nearly all 
the composition range. Furthermore, these values agreed reasonably well with the 
A12 values obtained from limiting diffusion studies in these systems. However, the 
expression used for gI2((3) was incorrect, and the correction factors used to 
calculate the hard-sphere results were given by the equation of Czworniak, 
Andersen, and Pecora 62  and based on the assumption that the correction factor for 
mutual diffusion was a linear function of composition. 

For an accurate calculation of all the diffusion coefficients in a binary mixture, 
computer simulation results are required for the corrections to the Enskog 
expressions at different compositions. Easteal and Woolf 77 have recently 
investigated the effects of differing mass ratios (range 1-10) and core size ratios 

0.5 

a3 

s - 
0 .1  

-a I 1 - 0  1 1  1 I 1  1 I 1  I I I 
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 

In ( W M ,  1 

Figure 9 
at various reduced volumes, V/V,. V, 1.5; ., 1.6; 0, 1.8; 0, 2.5; a, 3.0; A, 4.0 
(Reproduced by permission from Chem. Phys., 1984,88, 105) 

The mass dependence of the intradiffusion ratio for an equimolar hard-sphere mixture 

75 L. A. Woolf and K. R. Harris, Chem. Phys., 1978,32, 349. 
76 S. I. Sandler and E. A. Mason, J. Chem. Phys., 1968,48, 2873. 
7 7  A. J. Easteal and L. A. Woolf, Chem. Phys., 1984, 88, 101; corrigenda (in press). 
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(range 1 - 4 )  in a V/Vo range from 1.5 to 4 on the diffusion coefficients in an 
equimolar mixture. The ratio of the correct smooth hard-sphere intradiffusion 
coefficient to the Enskog coefficient for component 2 to that for component 1 
[denoted by ( D 2 / D l ) J  is given in Figure 9 for an equimolar mixture with o1 = o2 
to illustrate the mass dependence. 

Values at selected reduced volumes are presented in Table 5. The results show 
that differing size ratios are more important than differing mass ratios. 

Table 5 Predicted intradiffusion ratios in an equimolar mixture 

v/vo (a) (b) 
1.5 0.986 3.10 
1.6 1.034 2.83 
1.7 1.060 2.62 
1.8 1.068 2.46 
2.0 1.101 2.26 
2.5 1.134 2.10 
3.0 1.150 2.02 

Attempts to obtain (Dl  2)SHS/(D1 2)E for calculation of interdiffusion coefficients in 
the equimolar mixture were unsuccessful. It was proposed that for mixtures with a 
small departure from ideality this correction factor could be taken as the mean of 
the factors for the intradiffusion coefficients. A comparison of (D&M/(D12)E with 
values predicted by the Czworniak, Andersen, and Pecora equation 62 showed 
reasonable agreement at V/Vo = 1.6, but successively poorer agreement at 
V/Vo = 1.7 and 1.5. This reinforces the need for accurate computer studies on 
different mixtures. 

Measured inter-diffusion and intra-diffusion coefficients for 1 1 binary liquid 
mixtures were analysed and values calculated for (A1)2 and (A2)1. For mixtures 
where there was no strong specific interaction, there was a good correlation 
between A,, the ratio of A,, to the mean of (A1)2 and (A2)1, and the 
thermodynamic factor (i31nal/i31nxl),,,, though these were not identical (see 
corrigenda, re$ 77). The ratio of (D, /DJC from the simulations agreed with the 
measured ratio of the intra-diffusion coefficients within the combined uncertainties 
of calculation and experiment, except for mixtures containing an associated 
component. 

6 Viscosity Coefficients 
A. Monatomic Fluids at Supercritical Temperatures.-Analysis of dense gas 
viscosity coefficient data on the basis of the smooth hard-sphere model can be 
carried out in an analogous manner to the analysis of diffusion coefficient data 
described in Section 3. A quantity q* is defined by 
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where qE is the Enskog dense gas value, (q/qE) is the computed correction 
Enskog theory, and (qE/qo) is given by equation 9. 

sphere expressions to give 

to 

Values of q* can be obtained from experimental data by substitution of the hard- 

q* = 6.035 x lo8 q V f / ( M R T ) f  (32) 

The range of applicability of this model is tested by superimposing curves of q* 
versus log (V/  V,) from theory, equation 31, and q* versus log V from experiment, 
equation 32. Using extensive measurements at above critical densities for neon,78 
a r g ~ n , ~ ~ - ~ l  krypton, 80*82 and xenon,8o it was shown 27 that the density depend- 

Table 6 Comparison of calculated smooth hard-sphere viscosity coeficients with experiment 

Argon at 308 K Krypton at 323 K 

ViscositylmPa s 

P/bar 
6060 
5 835 
5 540 
5 290 
5 055 
4 800 
4 590 
4 100 
3 540 
3 020 
2 500 
2 355 
1 990 
1755 
1403 
1060 

994.0 
883.5 
726.5 
625.5 
496.0 
389.5 
302.0 

Calc. 

31.05 
29.94 
28.50 
27.35 
26.20 
24.97 
24.01 
21.72 
19.14 
16.84 
14.51 
13.87 
12.20 
11.08 
9.39 
7.73 
7.38 
6.82 
5.99 
5.44 
4.69 
4.13 
3.67 

Expt. 

31.37 (ref: 84) 
30.08 
28.68 
27.50 
26.3 8 
25.13 
24.1 5 
21.83 
19.20 
16.73 
14.34 
13.66 
11.88 
10.86 
9.22 
7.62 
7.30 
6.76 
5.99 
5.45 
4.74 
4.13 
3.62 

P/bar 
6 540 
6 020 
5 560 
5 0 0 0  
4 560 
4 030 
3 540 
2 930 
2 480 
2 005 
1755 

2 079 
1 347 

88 1.7 
603.0 
415.8 
308.3 
244.7 
193.0 

Calc. 

57.92 
53.08 
49.06 
44.28 
40.70 
36.52 
32.72 
28.1 1 
24.74 
21.16 
19.27 

21.71 
16.07 
12.12 
9.44 
7.36 
6.03 
5.2 1 
4.59 

Viscosiry/mPa s 
- 

Expt. 

57.40 (ref: 83) 
53.10 
49.35 
44.95 
41.70 
37.30 
33.32 
28.75 
25.20 
21.50 
19.37 

22.10 (ref: 82) 
16.33 
12.41 
9.79 
7.63 
6.19 
5.26 
4.47 

” N. J. Trappeniers, A. Botzen, H. R. Van Den Berg, and J. Van Oosten, Physica, 1964,30,985. 
l9 A. Michels, A. Botzen, and w. Schuurman, Physica, 1954, 20, 1141. 
8o E. G. Reynes and G. Thodos, Physica, 1964,30, 1529. 

J. A. Gracki, G. P. Flynn, and J. Ross, J. Chern. Phys., 1969, 51, 3856. 
N. J.  Trappeniers, A. Botzen, J. Van Oosten, and H. R. Van Den Berg, Physica, 1965,31,945. 
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ence of the data at above critical temperatures was very satisfactorily represented by 
the hard-sphere theory at densities from above twice the critical density down to 
about 1.2-times the critical density. Since then accurate experimental measure- 
ments have been made for krypton at 323 K 8 3  and for argon at 308 K84*85 at 
pressures up to 6 OOO atm, where the density approaches the point of solidification. 
These provide a much more critical test of the theory. The density dependence of 
these measurements, together with the earlier data, is compared with that given by 
the hard-sphere theory in Figure 10. Although the computed corrections to Enskog 
theory are less well known than the corresponding corrections to the diffusion 
coefficient, nevertheless it can be concluded that the smooth hard-sphere theory 
gives a very satisfactory fit to the viscosity coefficient data at densities down to 1.2- 
times the critical density. This corresponds, in the case of krypton data at 323 K, to 
a pressure range from 6 500 atm down to 250 atm in which the viscosity coefficient 
changes by a factor of eleven. For argon at 308 K, the data are closely fitted by the 
theory from a pressure of 6 OOO atm down to 300 atm, with a factor of nine variation 
in the viscosity. A comparison with the calculated values is given in Table 6 and the 
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Figure 10 Variation of q* (equation 32)  with logarithm of reduced volume. Valuesgiven by the 
hard-sphere theory are denoted by * with error bars. Experimental data for argon 0, ref. 79; e, 
ref. 84; 0, ref. 85; + , ref. 93: for krypton A, ref. 83; A, ref. 82. Solid line is given by equation 34 

8 3  J. Vermesse, M. Provansal, and J. Brielles, Physica, 1978, 92A, 282. 
84 J. Vermesse and D. Vidal, C.R. Hebd. Seances Acad. Sci. Ser. B., 1973, 277, 191. 
85 N. J. Trappeniers, P. S. Van Der Gulick, and H. Van Den Hoof, Chem. Phys. Lett., 1980,70,438. 
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Figure 11 
basis of hard-sphere theory for argon at 308 K and krypton at 323 K. Key as for Figure 10 

Percentage deviation of experimental viscosity data from values calculated on the 

deviations shown in Figure 11, as a function of reduced density, demonstrate that 
the fit is generally better than the uncertainties in the measured viscosity coefficients. 
Values obtained for the core sizes are summarized in Table 7. 

Table 7 Molecular core sizes (nm) for the rare gases 

TIK 173 223 298 323 348 
Argon 0.334 0.328 0.320 0.318 0.316 
Krypton 0.344 

The core sizes have an estimated uncertainty of less than 0.5%. The values for 
argon are higher than those given earlier 27 which had a greater uncertainty 
because the viscosity data did not at that time extend to the high densities necessary 
to define the diameter closely. These core sizes for argon can be expressed in the form 
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Q = 00[1 - B(T - TO)/TO] (33) 

where CJ,, is the hard-sphere diameter at reference temperature To. For a reference 
temperature of 300 K, the value of B for argon is 0.080. These core sizes can be 
compared with diameters obtained by application of the hard-sphere theory to gas 
solubilities,86 which correspond to temperatures approximately equal to the well- 
depth of the pair potential. 

In view of the uncertainties in the computed corrections to Enskog theory, the 
results given by the rare-gas data at densities greater than 1.2-times the critical 
density can be considered as the exact hard-sphere results. 

The solid line in 

with the values for 

Figure 10 can be expressed by the equation 

1/q* = C ai(Vo/V)‘ (34) 
i = O  

the coefficients a, given in Table 8. 
From this, the corrections to Enskog theory are given by the equation. 

with coefficients aj listed in Table 8. 
An alternative appr~ach,~’  based on liquid viscosity coefficient data, compared 

data for methane 88  with values calculated using the Enskog expression with core 
diameters determined from the expression (equation 18) for randomly close-packed 
hard-spheres at the freezing point 

o/nm = 0.116 11 ( V/cm3 mol-’)* (18) 

where Vis the molar volume at the freezing pressure obtained from the density data 
of Cheng, Daniels, and Crawf~rd.~’ This gave the correction to Enskog theory q/qE 
as a polynomial in V / V ,  with coefficients listed in Table 8. (The coefficients have 
been rounded off here to the appropriate number of significant figures.) 

Table 8 Coeficients of the equations for q* and (q/qE) 

00 a1 a2 a3 a4 a5 a6 

1/T* 0.044 55 2.1789 -5.9822 -6.421 40.258 -51.208 21.39 
(qE/q) (this work) 0.975 1.86 -17.56 94.9 -269.13 363.2 -189.51 
(q/qE) (ref: 87) 5.023 -46.748 205.41 -432.18 430.62 - 155.98 

86 E. Wilhelm and R. Battino, J. Chem. Phys., 1971, 55, 4012. 
A. J. Easteal and L. A. Woolf, Physica, 1984, 124B, 173. 
D. E. Diller, Physica, 1980, lWA, 417. 

89 V. M. Cheng, W. B. Daniels, and R. K. Crawford, Phys. Rev., 1975, B11, 3972. 
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The results obtained from liquid methane data are compared with the correction 
factors calculated from rare-gas data and with the computed corrections to Enskog 
theory in Figure 12. The hard-sphere valuesg0 are a combined result of 
extrapolations of computations for a square-well system and interpolations of the 
earlier results for a 108 hard-sphere system. The uncertainty is estimated to be 
between 5% and 7%. 

1.3 

1.0 

0.3 0.5 0 rl 
v,lv 

Figure 12 Density dependence of q/qE Vertical lines with error bars, hard-sphere theory, ref. 90; 
- - -from liquid methane data, ref. 87; -from rare-gas data, this work 

This close agreement supports the conclusion of previous studies "vg2 that 
methane behaves as a smooth hard-sphere fluid with regard to transport 
properties, and provides a reliable estimate of the corrections to Enskog theory. 
Furthermore, it illustrates that the hard-sphere theory can be satisfactorily 
applied to fluids at temperatures below the critical temperature where non- 
uniformities in the attractive potential energy surface for real fluids have been 
shown in computer simulation studies to have only a small effect on the 
molecular trajectories. 

B. Monatomics at Subcritical Temperatures-Easteal and Woolf *' have recently 
applied the corrected Enskog theory to the viscosities of the liquified rare gases. 
90 J. P. J. Michels and N. J. Trappeniers, Physica, 1980, lMA, 243. 
91 J. H. Dymond, Chem. Phys., 1976, 17, 101. 
92 J. J. Van Loef, Physica, 1978, %B, 34. 
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The corrections to Enskog theory were based on the use of methane as a model 
smooth hard-sphere fluid, as described in the above section, and core diameters 
calculated from liquid densities along the freezing curve according to equation 
18. The calculated results are compared with experimental data for 
kryptong5 and xenong6 in Figure 13, which is based on Figure 3 of their 
paper. 

1.1 fl, 

0 @I 
+ O  

.- - -3 I 
0.5 0.6 0.7 0.8 0.9 1.0 1.1 

T / T c  

Figure 13 Ratio of experimental viscosity coefjcients to values calculated on the basis of the 
hard-sphere theory with core sizesgiven by equation 18. Argon a, ref. 94; 0, ref. 93; krypton V, 
ref. 95; xenon 0, ref. 96 

It is found that for argon at temperatures from about 0.7-times the critical 
temperature Tc to 1.2 Tc the agreement is better than 3%, which is within the 
combined uncertainties of the corrections to Enskog theory and the experimental 
uncertainties. For krypton and xenon, the deviation is about 10% at 0.8 Tc but 
within the estimated probable uncertainty of the experimental data. 

It is apparent that at lower reduced temperatures there is a systematic and 
increasing discrepancy between experimental data and values calculated by this 
application of the smooth hard-sphere theory. This is explained 8 7  by a breakdown 
of equation 18 for these liquids as the temperature approaches the triple point. 
Values calculated for the core diameters of argon to give agreement at these low 
reduced temperatures were given by the equation 

CT = CT,, for TR > 1.5 
CT = opRa for 1.0 < TR < 1.5 

where TR is the temperature reduced by the triple point temperature and CT,, 

9 3  A. De Bock, W. Grevendonk, and W. Herremann, Physicq 1967,37, 227. 
94 W. N. Haynes, Physicu, 1973, 67,440. 
9 5  A. Michels and C. Prins, Physicu, 1962, 28, 101. 
96 S. A. Ulybin and V. I. Makarushkin, High. Temp. (USSR), 1977, 15, 430. 
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obtained from density data, was given by the following expression (here rounded off 
to give significant figures): 

ap/(nm) = 0.409 36 - 1.0492 x lO-’ (T/K) + 
5.491 x (T/K)’ - 1.117 x (T/K)3 (37) 

The ratio R,  was found to vary with temperature according to the equation 

R ,  = 0.4102 + 1.2941T~ - 0 .9611T~~  + 0 .2402T~~  (38) 

The Q values so derived agree to within 1% with the values previously obtained by 
Dymond ’’ from fitting liquid argon viscosity coefficients. 

Application of the same modifications to the core diameters, equations (36) and 
(38), lead to a significant improvement to the viscosity data fit for krypton and 
xenon with the Q values from densities along the freezing curve given by the 
expressions 

Krypton: o/(nm) = 0.417 40 - 4.389 x 1p (T/K) + 7.944 x lO-’ (T/K)’ 
Xenon: o/(nm) = 0.449 60 - 2.988 x 10-4 (T/K) + 3.468 x lo-’ (T/K)’ (39) 
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k 
Figure 14 The ratio of the viscosity coefficient q for the smooth hard-spherejuid and for 
various metals to the Enskog theory approximation qE, plotted as a function ofpacking fraction, 
5. The circles are hard-sphere molecular dynamics results (ref. 11) and curve HS is a smoothed 
representation of these results. The other curves are obtained from analysis of experimental data 
for liquid metals Cfor data references, see ref. 98) 
(Reproduced by permission from Chem. Phys., 1975,8, 21) 

97 J. H. Dymond, Physica, 1975,79A, 65. 
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C. Liquid Metals-The smooth hard-sphere theory has been applied to the 
viscosity coefficients of liquid metals,’* using core diameters determined as in 
Section 3B. The authors obtained smooth values for the correction factor (q/qE) by 
using the observation of Alder, Gass, and Wainwright l 1  that the product of the 
self-diffusion coefficient and the viscosity coefficient for a smooth hard-sphere 
system varies slowly with packing fraction. These ratios of exact to Enskog 
viscosity coefficient are compared with values obtained from experiment for several 
metals in Figure 14. 

Although these curves do not coincide exactly, there is generally close agreement 
with the theoretical curve, with the exception of antimony and zinc which are 
significantly different. The authors suggest that the caesium curve should be taken 
as the universal (q/qE) curve for metals. This leads to a greatly improved fit to the 
liquid metal viscosity data at low temperatures and, for 15 of the 23 metals studied, 
the agreement over the complete temperature range was within the typical scatter 
of the measurements. Whether the theory is applicable or not depends on the 
position of the metal in the Periodic Table, as shown in Table 9. 

Table 9 Applicability of the hard-sphere theory for viscosity 

IA IIA VIII IB IIB 
Li 

Na i M g  
0.095 0.065 

0.060 i 

Rb 
0.148 
c s  
0.169 

Ag Cd 
0.126 0.097 
Au Hg 
0.137 0.110 

IIIB IVB VB 

A1 
0.050 

The dashed line represents the dividing line between the elements for which the 
theory is accurate, those below and to the left, and those for which it is not. The 
number given is the radius (nm) of the ion when all valence s and p electrons have 
been removed. The metals for which agreement is poor were either transition metals 
for which accurate data were difficult to obtain because of the high melting-point, 
or else elements having less metallic character, appearing at the top of the Groups 
and to the right of the rows. It appears that for metals having two or more valence 
electrons in s and p orbitals, there is a critical value of 0.073 nm for the ionic radius 
such that, for all metals with a radius greater than this, the viscosity is accurately 
described by the hard-sphere theory. 

98 P. Protapapas, H. C. Andersen, and N. A. D. Parlee, Chem. Phys., 1975,8, 17. 
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D. Polyatomic Fluids.-For a system of fairly spherical polyatomic molecules at 
densities greater than twice the critical density, Chandler 42 showed that the 
viscosity coefficient is equivalent to the rough hard-sphere viscosity coefficient qRHs. 
When account is taken of the effect of changes in the angular momentum as well as 
changes in the linear momentum of a particle upon collision, then it is found that 
the rough hard-sphere coefficient is directly related to the smooth hard-sphere 
coefficient: 

where C is assumed to be constant. It obeys the inequality 

and equals one when coupling between angular and translational motions is absent. 
Most tests of the rough hard-sphere model for viscosity have been made using 

the full equation 

where (q/qE) is the Alder;Gass, and Wainwright computed correction to Enskog 
theory. Values of the core size were obtained either from fitting the high density 
diffusion coefficient data for the fluids or from plots of ln(l/q) uersus In p, from 
which the slope was determined and 0 derived using the smooth hard-sphere 
expressions for fluidity given by D y m ~ n d . ~ ~  Values for the core diameters agreed 
closely with values obtained from self-diffusion coefficient data. Typical values for 
the translational-rotational coupling factor are given in Table 10. 

Table 10 Translational-rotational coupling factor C for viscosity 

Compound 
Chlorotrifluoromethane 
Carbon tetrachloride 
Tetramethylsilane 
Benzene 
Perfluorocyclobutane 
C yclohexane 
Meth ylcyclohexane 
Pyridine 

T rangelK 
303-348 
283-328 
298-373 
3 0 3 4 3 3  
3 2 3 4 2 3  
3 13-383 
223-298 
3 0 3 4 2 3  

0 rangelnm 
0.460-4.458 
0.527-0.522 
0 .540-4 .555  
0.5 14-O.506 
0.5584.554 
0.5 5 5 4 . 5  5 1 
0.578-0.574 
0.499-0.492 

C 
0.77 f 0.02 

1.74 
1.39 
1.32 
1.23 

3.90-2.48 
1.41-1.31 

1.49-1.22 

Ref: 
48 
42 
99 
99 
50 
52 
53 
54 

The coupling factor is practically temperature independent for those molecules 
which can be considered pseudospherical but shows a marked temperature 
dependence where there is a significant departure from spherical shape or where the 
molecules can hydrogen-bond. 

The rough hard-sphere model of transport properties has been treated in a 

99 H. J. Parkhurst, Jr. and J. Jonas, J. Chem. Phys., 1975,63,2705. 
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different way by Dahler with the derivation'OO*'O' and solution102*'03 of an 
appropriate kinetic equation. The transport coefficients depend on the internal 
mass distribution, characterized by the moment of inertia which in reduced form is 
given by 

41 
mcZ 

k=- 

The dimensionless moment of inertia can have values from zero when the mass is at 
the centre, to two-thirds when the mass is evenly distributed over the surface of the 
sphere. The coefficient of viscosity can be written lo4 in terms of k and the reduced 
volume V/Vo. It is found that (qRH&/qSHS has a maximum value of 1.64 and, more 
important, is constant to within 2% for a given value of k over the range of V/V,  
from 1.5 to 2.5. This supports the result obtained by Chandler4' that the rough 
hard-sphere coefficient is proportional to the smooth hard-sphere coefficient, 
though in Chandler's theory there is no way of evaluating the proportionality 
constant. The disadvantage of the Dahler theory is that it overemphasizes the role 
of inelastic collisions. 

Generally, the values derived for the translational-rotational coupling factor 
derived from viscosity are greater than unity as postulated by Chandler.42 
However, for chlorotrifluoromethane Harris 48 obtained the figure of 0.77 for C 
which he showed to be not unreasonable since application of the slip and stick 
boundary conditions of the Stokes-Einstein equation leads to the inequality 

where A is the coupling factor from self-diffusion. 
More recently, Easteal and Woolf 36 have used their calculated corrections to the 

approximate Enskog theory, based on methane data, to determine the density and 
temperature dependence of the translational-rotational coupling factor for 
relatively simple polyatomic fluids. They find that the coupling factor may have a 
strong density dependence, as illustrated in Figure 15 for carbon tetrachloride. 

For other liquids such as benzene, the coupling has a strong temperature 
dependence in addition, as shown in Figure 16. 

The core sizes for these molecular fluids were calculated from the molar volumes 
at the freezing pressure, equation 18, which as in the case of monatomic fluids 
(Section 6B) may not be appropriate at these low reduced temperatures. Further 
work is required to establish conclusively whether the translational-rotational 
coupling factors do have such a strong density and temperature dependence. If this 
is indeed the case, it contradicts the basic postulate of Chandler and the rough hard- 

"' W. Condiff, W. Lu, and J. S. Dahler, J. Chem. Phys., 1965,42, 3445. 
lo' B. J. McCoy, S. I. Sandler, and J. S. Dahler, J. Chem. Phys., 1966, 45, 3485. 
lo* M. Theodosopulu and J. S. Dahler, .I. Chem. Phys., 1974,60, 3567. 
'03 M. Theodosopulu and J. S. Dahler, J. Chem. Phys., 1974, 60, 4048. 

S. F. Y. Li, Ph.D. Thesis, University of London, 1984. 
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Figure 15 Density dependence of the translational-rotational coupling factor for viscosity for 
carbon tetrachloride. V, 283.2 K, 0, 298.2 K, 0, 313.2 K; A, 328.2 K 
(Reproduced by permission from Physica, l984,124B, 187) 

k.41 OA2 0.43 0.44 0.45 0.46 0.47 0.48 
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e 
Figure 16 Density dependence of the translational-rotational coupling factor for viscosity for 
benzene. V, 288.2 K; 0 ,298.2 K; 0, 313.2 K; A, 328.2 K, 0, 333.2 K 
(Reproduced by permission from Physica, 1984, 124B, 188) 
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sphere theory is not appropriate. However, for the purpose of data correlation, the 
model can still be retained and the dependence of the coupling factors on 
temperature and density allowed to remain. 

E. Binary Mixtures.-Shear viscosities for mixtures of argon + methane, 
calculated by Kandiyoti and McLaughlin”’ on the basis of the smooth hard- 
sphere theory using Thorne’s extension ” to the Enskog theory, were found to be in 
poor agreement with experiment. However, Jhunj hunwala, Boon, Frisch, and 
Lebowitz Io6  found good agreement using this theory with measured viscosities for 
argon + krypton mixtures. As pointed out by M~Donald,’~’ this agreement was 
somewhat fortuitous in view of the fact that the core diameters were derived from 
viscosity coefficients for the pure liquids using the approximate Enskog theory. 
When the computed corrections for correlated motion l 1  were taken into account, 
the core sizes were found to be close to values obtained from the position of the first 
peak in the structure factor. For the calculation of mixture viscosities, the 
correction factors to the Thorne-Enskog expression were taken as equal to the 
factors for the single component system at the same packing fraction. The 
calculated viscosities were then in closer agreement with experiment, but this too 
was fortuitous because the Percus-Yevick approximation was used for the radial 
distribution function at contact. 

This approximation can be readily removed using correct expressions for 
g,,((r),60 but a rigorous test of the applicability of the smooth hard-sphere theory 
for mixture viscosities awaits the accurate computation of the correction 
factors. 

7 Thermal Conductivity Coefficients 
A. Monatomic Gases at Supercritical Temperatures.-It is convenient to test the 
applicability of the smooth hard-sphere theory for interpretation of thermal 
conductivity data by considering the function h* defined by: 

where (hlh,) gives the computed correction to Enskog theory,” (h,/ho) is the ratio 
of Enskog dense hard-sphere thermal conductivity coefficient to the dilute hard- 
sphere value, equation 10, and h* is core size independent. 

Substitution of the hard-sphere expressions leads to the following relationship 
for a monatomic fluid which behaves as an assembly of hard spheres: 

h* = 1.610 x lo* hV*(M/R379* (44) 

This theory can be tested, using the extensive experimental measurements at high 

lo’ R. Kandiyoti and E. McLaughlin, Mol. Phys., 1969, 17, 643. 
Io6 N. Jhunjhunwala, J. P. Boon, H. L. Frisch, and J. L. Lebowitz, Physica, 1969,41, 536. 
lo’ I. R. McDonald. Physica, 1973,65, 630. 
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I 

pressures and at temperatures above the critical temperature for argon 108~109 and 
krypton,10g for which values for the core sizes have been obtained by application of 
the hard-sphere theory to viscosity coefficient data, Table 7. There are thus no 
adjustable parameters, and h* from experiment, equation 44, can be compared 
directly with h* from theory, equation 43, by plotting versus In (V/Vo).  The results 
are illustrated in Figure 17, which shows very close agreement over the density 
range from about 0.8- to 2.5-times the critical density. At higher densities, the 
experimental results are lower than the hard-sphere predictions. This may possibly 
be due to errors in the computed corrections to Enskog theory. Although recent 
calculations for a 108-particle system agree closely with the earlier results," the 
number dependence of the results has not yet been established. Resolution of this 
discrepancy therefore awaits the results of further computer studies. 
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A comparison of calculated thermal conductivities with experimental values at 
densities below 0.8-times the critical density shows the predicted values to be lower 

A. Michels, J. V. Sengers, and L. J. M. Van de Klundert, Physica, 1963,29, 149. 
lo9 R. Tufeu, D. Vidal, M. Lallemand, and B. Le Neindre, High Temp.-High Press., 1979, 11, 587. 
'lo J. P. J. Michels and N. J. Trappeniers, Physica, 1981, lWA, 299. 
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and this difference increases as the density is decreased. This is attributable to 
neglect of intermolecular attractions which become significant at lower densities. 
These differences can be empirically related" to the reduced temperature and 
reduced volume. 

There is an additional factor with regard to the thermal conductivity and that is 
the anamolous behaviour in the critical region. The smooth hard-sphere theory, 
modified to account for the effects of intermolecular attractionsg7 is unable to 
reproduce this behaviour. This is not unexpected, but it is interesting that 
deviations begin to appear at temperatures as high as 1.7 T,. This effect has been 
confirmed in a recent accurate experimental study.' l 1  

B. Polyatomic Fluids-The thermal conductivity coefficient for a rough hard- 
sphere fluid has been treated by Theodosopulu and Dahler.'02*103 Li'04 has 
evaluated their expressions and shown that although the translational and 
rotational contributions vary quite significantly with change in the moment of 
inertia, the reduced total thermal conductivity, h*, given by analogy with equation 
43 as 

varies by less than 10% with change in the moment of inertia over the whole density 
range. 

To test Dahler's theory for the thermal conductivity it is first neces- 
sary to establish values of volume V,  and coupling factor C from analysis of 
viscosity coefficient data in terms of Chandler's rough hard-sphere model. Since the 
theories of Chandler and Dahler are mutually consistent for viscosity of rough 
hard-sphere systems, a value for the dimensionless moment of inertia, k, can be 
derived from C and the thermal conductivity calculated and compared with 
experiment. Li lo4 applied this method to n-hexane at 298 K, for which he found 
C = 1.45, V = 78 x 1W6 m3 mol-', k = 0.44, and n-octane at 298 K for which 
C = 1.7, V = 105 x 1W6 m3 mol-', k = 0.66. The calculated thermal conductivity 
coefficients agreed with measured values for n-hexane to within 5% over the density 
range for which the smooth hard-sphere model is stable (corresponding to 
pressures up to 150 MPa). For n-octane, the differences were somewhat greater but 
still less than lo%, which is remarkably good in view of the simplicity of the model. 

8 Correlation and Prediction of Transport Coefficients 
From a chemical engineering viewpoint, it is essential to be able to make accurate 

"' C. A. N. de Castro and H. M. Roder, J.  Rex Nat. Bur. Stand., 1981,86, 293. 
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predictions of thermophysical properties. The most satisfactory representation of 
experimental data is one which is based on theory. As discussed above, the 
physically realistic hard-sphere models lead to a satisfactory fit of experimental 
transport coefficient measurements for dense fluids and their mixtures where the 
molecules are reasonably spherical in shape. The problem lies in the transition to a 
metastable state that occurs for hard-sphere systems at high densities. For many 
real fluids this density corresponds to a pressure far below the experimental freezing 
pressure at a given temperature. However, the methods used to demonstrate the 
applicability of the hard-sphere theories for the transport properties can be 
successfully extended to give correlation/prediction schemes of high accuracy at all 
densities. 

A. Self-Diffusion Coefficients.-On the basis of the rough hard-sphere theory, the 
reduced self-diffusion coefficient DRHS is given by 

If the coupling factor is density independent and temperature independent, DRHs 
is just a function of molar volume for a given fluid at a constant temperature. Plots 
of D&s (or log D&) uersus log V for different isotherms will therefore be 
superimposable laterally, and the amount by which the curve at a given temperature 
has to be moved to superimpose it on a curve at a reference temperature TR leads to 
a value for VO( r)/ YO( TR).” Typical results, for tetramethylsilane, are shown in 
Figure 18. The curves for different temperatures are superimposable on the single 
curve given by data at the reference temperature of 373.2 K, not only over the 
density range for which the hard-sphere theory is valid (up to 150 MPa at 298.2 K), 
but over the whole density range (for pressures up to 400 MPa). Values derived for 
Vo( T)/( Vo( TR) were as follows: 

298.2 323.2 348.2 373.2 
1.043 1.033 1.01 4 1 .OOo 

TIK 
V,(T)/~O(TR) 

Once the reference curve has been established for a given fluid, self-diffusion 
coefficients at other temperatures and densities can be accurately predicted. 

B. Viscosity Coefficients.-A method analogous to that described above for self- 
diffusion coefficients can be used for the successful correlation and prediction of 
viscosity coefficients over the whole density range. A quantity q’ was defined as 
104q VfI(MQ3 in the cgs system of units, or more generally, as 

q’ = 9.118 x lO’qV$/(MRq* (48) 

3. H. Dymond and T .  A. Brawn, Proc. 7rh Symp. Thermophys. Prop., Am. SOC. Mech. Engrs., New York, 
1977,660. 
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Figure 18 Correlation of experimental self-diffwion coefficient data for tetramethylsilane at 
different temperatures and pressures, based on the 373.2 K isotherm. D& is defined in 
equation 15 and V' = V-V,(T,)/V,(T). A, 298.2 K; 0, 323.2 K, a, 348.2 K; 0, 373.2 K 
(Reproduced by permission from Proceedings of a Symposium on Transport Properties of 
Fluids, National Engineering Laboratories, East Kilbride, H.M.S.O., 1979) 

For the density region where the rough hard-sphere theory is applicable, q' will be 
proportional to (qsHs/qo)( V/ Vo)f and so will depend only on (V/ V,) for a given 
fluid at a given temperature, providing that the translational-rotational coupling 
factor for viscosity is density- and temperature-independent. Plots of q' (or of log q') 
uersus log V using data for a given compound at different temperatures should be 
superimposable on the curve obtained for any reference temperature. The amount 
of adjustment gives a value for Vo(T)/Vo(TR). Results obtained for carbon 
tetrachloride and for tetramethylsilane showed that the curves were superimposable 
not only over the density range for which the rough hard-sphere theory was 
applicable, but over the whole density range. This method also gives an excellent 
correlation I2 of the viscosity data for large aspherical molecules such as bicyclic 
hydrocarbons, and has been successfully applied to the correlation of viscosity data 
for liquid normal alkanes, aromatic hydrocarbons, and for their binary 
mixtures. l 1  '-' A typical plot is shown in Figure 19, for n-hexane. 
' I 3  J. H. Dymond, K. J. Young, and J. D. Isdale, Int. J. Thermophys., 1980, 1, 345. 
'I4 J. H. Dymond, J. Robertson, and J. D. Isdale, Int. J .  Thermophys., 1981, 2, 133. 

J. H. Dymond, J. Robertson, and J. D. Isdale, Int. J.  Thermophys., 1981, 2, 223. 
'I6 J. H. Dymond, N. F. Glen, and J. D. Isdale, Inr. J .  Thermophys., in press. 
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Figure 19 Correlation of experimental viscosity coefficient data for n-hexane at different 
temperatures and pressures based on the 373.2 K data. q' is defined by equation 48, V' = 
V*Vo(Ta/(Vo(T). 0,298.2 K; a, 323.2 K; 0,348.2 K; ., 373.2 K 
(Reproduced by permission from Int. J. Therrnophys., 1980,1, 364) 

C. Thermal Conductivity Coefficients.-On the basis of the rough hard-sphere 
theory of Dahler,102i103 the thermal conductivity coefficient of a fluid can be 
represented by the general equation: 

where A. is given by equation 46 and cl, c2, and c3 are algebraic functions of the 
dimensionless moment of inertia, k. As shown by Li'04 the dependence of the 
thermal conductivity on k is weak. For this model system, k is temperature 
independent and for a real fluid the temperature dependence is likely to be small. 

Substitution for A. and Vo in equation 45 allows h* to be calculated from 
experimental measurements: 

h* = 1.936 x 107kV*(M/R7)* (50) 

By analogy with D* for diffusion and q' for viscosity, h* is expected to be a function 
only of (V/ Vo). Plots of h* uersus log V at different temperatures for a given fluid 
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should therefore be superimposable on the curve for a reference temperature. The 
relative shift along the log I/ axis provides a value for the ratio of the V ,  values at 
the different temperatures. Li lo4 has tested this approach using very accurate 
measurements on n-hexane, n-octane, benzene, and cyclohexane, using the lowest 
isotherm as reference in each case. A very satisfactory correlation was obtained, 
with values for V,(T)/V,(T') in close agreement with values obtained by 
Dymond l 1  3--1 for the same liquids by interpretation of viscosity coefficients on 
the basis of the rough hard-sphere theory. 

Since h* is so weakly dependent on k, there is the possibility of a universal 
correlation for h*. This was investigated by Li lo4 using accurate results for eleven 
hydrocarbons over a wide range of thermodynamic states. The results are shown in 
Figure 20, with the 307 K isotherm for n-hexane as the reference curve. The V ,  
value at this temperature was taken as 72.64 x 1W6 m3 mol-'. 

1 I 

< 
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Figure 20 Reduced thermal conductivity versus reduced volume for eleven hydrocarbons 
(Reproduced by permission from re$ 104) 

The universality of this reduced plot for hydrocarbons is striking, especially in 
view of the wide range of temperature and pressures at which the measurements 
were made. Though the deviation of some individual points from the best curve 
is slightly greater than the uncertainty estimated on the basis of the measured 
thermal conductivity and density, it is apparent that this near universality will 
provide a very good estimate of the thermal conductivity for members of the n- 
alkane series at different temperatures and pressures. A similar result is to be 
expected for other homologous series. 
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9 Conclusions 
Significant progress towards a successful molecular interpretation of transport 
properties in dense fluids and their mixtures has resulted from consideration of 
hard-sphere theories. The hard-sphere model, with a temperature dependent core 
size, gives a simple yet physically reasonably realistic description of molecular 
trajectories in the dense fluid state. The transport coefficients of monatomic 
species can be satisfactorily reproduced by the smooth hard-sphere theory. For 
pseudospherical polyatomic species, the derived translational-rotational coupling 
factors appear to be in general accord with expectations for the molecules con- 
cerned. However, a fuller discussion of these factors and their dependence on 
density and temperature must await more accurate computer calculations of the 
corrections to the approximate hard-sphere transport coefficients. Furthermore, 
for a rigorous examination of the limits of applicability of the hard-sphere theories 
for transport properties it is essential to have very accurate experimental data 
over a wide range of temperature and pressure for spherical, pseudospherical, 
and indeed non-spherical molecular fluids and their mixtures. 

Although the hard-sphere model is only an approximation, at the present time 
it provides the most satisfactory basis for the interpretation, correlation, and 
prediction of transport properties of dense fluids and their binary mixtures. 
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